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STABILITY OF THIN SHALLOW SHELLS OF NEGATIVE
GAUSSTIAN CURVATURE

V. M. Ermolenko and V. M. Kornev UDC 539.31

The density of eigennumbers in stability problems of shells with positive Gaussian
curvature is examined in [1-3]. An interpretation of the results obtained was proposed that
permits relating the density of the initial section of the spectrum to the shell responsive-
ness to small perturbations during experiment, and also to imperfections in the geometric
shape of the shell. Investigation of the spectrum in problems studied less, stability prob-
lems of shells of negative Gaussian curvature, is natural. Of greatest interest are shells
of negative Gaussian curvature that are almost cylindrical.

The system of stability equations of shallow shells whose radii are almost constant has
the form [4]

(Eh)™' V2V —Aw = 0, DV2V2w + Afp = 0V2V2 (0,0, + Glly),
i t &, 14

. 82 5
P — = e 2 o — P e s
oy = — T, oa, Ty, V Py + W T RyaE R a2

where x, v are Cartesian coordinates; w(x, y), normal deflection; ®(x, y), stress function;
T,, T», forces in the shell middle surface; and R, ™ const, R; & const. The eigenfunctions of
stability problems of hinge-supported panels have the form
oz, y) = Qo sin kn2 sin by,
w(z, y) = w, sin kpz sin kyy, k, = nala, ky, = m/b,
' n,m=1, 2,...
The eigenfunctions for shells of revolution are also the following

oz, y) = @ sin knt cos kY, (1)
w(z, y) = w,sin kn €os kyy,

kn = n/R, ky = or/l, n =0, 1, ..., m=1, 2, ... . For n = 0, we obtain the eigenfunctions
of axisymmetric buckling from the relationships (1). The eigennumbers of the problem under
consideration are found from the formula ’

3 4012 2 \2
Amn=('»fc§z+ki 4'*;“ (a’“m“"zx’ft , (2)
(k?n + '&kn) (";n—l' kn)‘

where A = —oa./D, %x* = Eh/DR%, ¥ = R2/R,, & = oz/a;.

Let us introduce a polar coordinate system
k,, = rcos 0, kn=rsin8(r>o,0<0<;;/2)' (3)

in the plane of the wave numbers ky, kn. After substituting these expressions for kp, kn
into (2), we obtain a biquadratic equation in the polar radius r. After still another sub-
stitution & =sin?0 (0L << 1), the formula for r takes the form (n = A/2x?)

A=t — EA—0) = VAT —E0 — O)F — A—&L— DFl. (4)
The relationship (4) determines the boundary of the domain Q within which n < no. It is
meaningful under the condition

P -1 -9 — 1 — 1 —pPk>0, (5

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No.
2, pp. 134-137, March-April, 1983. Original article submitted March 3, 1981.

260 0021-8944/83/2402-0260807.50 © 1984 Plenum Publishing Corporation



The number of eigenvalues A less than a given no is defined in [5] as the ratio between
the area of the domain @ within which n < no and the area of a cell AkpAknp:

A =g Ak ”dk k. (6)

The relationship (6) in the coordinate system (3) has the form

87y
A()—“—”l”rdrde
O ny
After integration with respect to r and substitution of (4), we obtain

sz(n)
abu n [1—E(1——ﬁ)] [1—3(1—-/] 7
Am) = l/ g dt. (7N

8y(W)
The limits of integration S,(n) and S»(n) are determined from condition (5). The expression

for the eigenvalue density is obtained by differentiating (7) with respect to the parameter
n:
84(n) .
=5 : - F ; 2
2% & Via—gnwit—ed—oP—1—sd—0"

Let us introduce the notation

E= = —g—nl—®) &=+l —y 4l —9)

We can write (8) in the form

Sy(m)
Nt — et — 1% de , (9)
s Ve i@ =8 E—-E)E—E)

B=un—ﬁv—u~m%

Depending on the sign of the expression n?*(1 —§)> — (1 — y)?, the constant a, takes the
values *1. The integral I in {(9) is an integral of elliptic type dependent on the critical
load parameter n, the parameter ¥ characterizing the kind of loading, and the curvature
parameter . Shells with curvature ¥ < 0 in whose middle surface the compressive forces

$ >0 act, are considered below. This integral reduces to a Legendre normal form [6]. In
the general case it can be written in the form

N(n)— I I=

I = uldK(k) + A E(k) + A0I(R, k). (10)
Here K(k), E(k), and I(h, k) are, respectlvely, the complete elliptic integrals of the
first, second, and third kinds, u = 2/[52(1 —-gl)]l ?, and the coefficients As, A;, A, depend

onn, £1, E2,%, X. In reducing the integral to the form (10) we consider the relationships
<<, [x] =®. In the first case the expressions for the coefficients Ao, A, Az are the
following

g g U0 h
Ay=1— 55— Ay =— (-9 §12(1 By (2 — &) (1)
A—NEr: -2+ 5 +38° 1l
A2=—2(1—ﬁ)§1[1—- Y kz_h’ ] o<,

and the constants k? and h have the form
& = (& — E)/(E:(1 — &), B = (3 — E))/E,.

The Ao, A:, Az are written in the same form as the parameter n changes within the boundaries
g8 <1, except in this case k* = £,(1 — £,)/ (82 — &), h =1~ &;. As the parameter n
grows further, we obtain

8)° ) 3
A0=[1~(1—ﬁ)§1] ,"';—(1—'—)1 A1=(1—ﬂ)‘§§m,

m°u—ﬂm{1~a—mlh7fﬁﬂpffﬁJn>n
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Fig. 1
where

= (& — B/(&( — &), 2 = 1/(1 — §&).

Expressions for Ao, A;, A, are obtained analogously under the conditionly|=®. If 0 < n<
1, then the formulas (11) are valid. These coefficients later take the form

- _ 2 L@_ —2F g2 =%k 1y
A== (= &P — o [ -2t — 8], 4, = — s -2k -8l
-0 [h2—-2h(1+k2)+3k21
A2=—[2(1—ﬁ)[1f2§1+§11&] h)(k ——h) 1
ho=El(E— &), B = (1 — §1)§2/(§z — &)
And finally, for > Ixl/® the formulas for As, A,, A; are the very same as in the relation-
ships (12).

Certain fundamental properties of the density of the spectrum can be extracted in the
problems under consideration without evaluating the elliptic integrals. The spectrum of the
problems mentioned has two condensation points corresponding to the characteristic eigen~
numbers nl——leﬁ ;= 1. For le = ¢ these points coincide, resulting in an abrupt growth
in the density. The point n = 0 is asymptotic for the beginning of the spectrum. Analogous
results are obtained in Vibration problems for shells of negative Gaussian curvature [7].

Results of a numerical experiment on computing the initial section of the spectrum by
means of (2) are represented in the figure. The critical loads calculated by means of the
formula mentioned are ordered by magnitude, then are grouped in intervals of length An =
0.05. The number of eigennumbers per a given interval is denoted by the letter j. On the
left is the scale for curves | and 2, while on the right is the scale for curve 3. Calcula-
tions were performed for the following values of the parameters: curve ! y = —0.005, & =

1, R/h = 400; curve 2 y = —0.01, ¢ = 0.1, R/h = 400; and curve 3 x = —0.333,% = 0.5,
R/h = 1600, The condensation point on all three graphs is quite distinct for n = 1. An in-
crease in the density of the spectrum is observed on curve 3 in the neighborhood of this
point. As the thin-walledness parameter increases, the condensation of the eigennumbers in
the neighborhood of n = n: is more clearly defined. This is related to the fact that esti-
mates of the eigennumber density obtained according to (5) will be more exact the higher the

number of the eigennumbers with which we have to deal.
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